MakeItFrom.com
Menu (ESC)

N06002 Nickel vs. C93400 Bronze

N06002 nickel belongs to the nickel alloys classification, while C93400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06002 nickel and the bottom bar is C93400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 41
9.1
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 81
38
Tensile Strength: Ultimate (UTS), MPa 760
270
Tensile Strength: Yield (Proof), MPa 310
150

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 990
150
Melting Completion (Liquidus), °C 1360
950
Melting Onset (Solidus), °C 1260
850
Specific Heat Capacity, J/kg-K 450
350
Thermal Conductivity, W/m-K 9.9
58
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 55
32
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 9.3
3.3
Embodied Energy, MJ/kg 130
54
Embodied Water, L/kg 270
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
21
Resilience: Unit (Modulus of Resilience), kJ/m3 230
120
Stiffness to Weight: Axial, points 14
6.3
Stiffness to Weight: Bending, points 23
17
Strength to Weight: Axial, points 25
8.3
Strength to Weight: Bending, points 22
10
Thermal Diffusivity, mm2/s 2.6
18
Thermal Shock Resistance, points 19
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0
82 to 85
Iron (Fe), % 17 to 20
0 to 0.2
Lead (Pb), % 0
7.0 to 9.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 42.3 to 54
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
7.0 to 9.0
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0