MakeItFrom.com
Menu (ESC)

N06002 Nickel vs. S44330 Stainless Steel

N06002 nickel belongs to the nickel alloys classification, while S44330 stainless steel belongs to the iron alloys. They have 41% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N06002 nickel and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 41
25
Fatigue Strength, MPa 250
160
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 81
78
Shear Strength, MPa 520
280
Tensile Strength: Ultimate (UTS), MPa 760
440
Tensile Strength: Yield (Proof), MPa 310
230

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 990
990
Melting Completion (Liquidus), °C 1360
1440
Melting Onset (Solidus), °C 1260
1390
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 9.9
21
Thermal Expansion, µm/m-K 14
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 55
13
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 9.3
2.8
Embodied Energy, MJ/kg 130
40
Embodied Water, L/kg 270
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
91
Resilience: Unit (Modulus of Resilience), kJ/m3 230
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 25
16
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 2.6
5.7
Thermal Shock Resistance, points 19
16

Alloy Composition

Carbon (C), % 0.050 to 0.15
0 to 0.025
Chromium (Cr), % 20.5 to 23
20 to 23
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0
0.3 to 0.8
Iron (Fe), % 17 to 20
72.5 to 79.7
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 42.3 to 54
0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.8
Tungsten (W), % 0.2 to 1.0
0