MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. 1350 Aluminum

N06007 nickel belongs to the nickel alloys classification, while 1350 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06007 nickel and the bottom bar is 1350 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 38
1.4 to 30
Fatigue Strength, MPa 330
24 to 50
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 470
44 to 110
Tensile Strength: Ultimate (UTS), MPa 690
68 to 190
Tensile Strength: Yield (Proof), MPa 260
25 to 170

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1340
660
Melting Onset (Solidus), °C 1260
650
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
230
Thermal Expansion, µm/m-K 14
24

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 260
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
0.77 to 54
Resilience: Unit (Modulus of Resilience), kJ/m3 170
4.4 to 200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 23
7.0 to 19
Strength to Weight: Bending, points 21
14 to 27
Thermal Diffusivity, mm2/s 2.7
96
Thermal Shock Resistance, points 18
3.0 to 8.2

Alloy Composition

Aluminum (Al), % 0
99.5 to 100
Boron (B), % 0
0 to 0.050
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23.5
0 to 0.010
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 1.5 to 2.5
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 18 to 21
0 to 0.4
Manganese (Mn), % 1.0 to 2.0
0 to 0.010
Molybdenum (Mo), % 5.5 to 7.5
0
Nickel (Ni), % 36.1 to 51.1
0
Niobium (Nb), % 1.8 to 2.5
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.020
Tungsten (W), % 0 to 1.0
0
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1