MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. 6110A Aluminum

N06007 nickel belongs to the nickel alloys classification, while 6110A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06007 nickel and the bottom bar is 6110A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 38
11 to 18
Fatigue Strength, MPa 330
140 to 210
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 470
220 to 280
Tensile Strength: Ultimate (UTS), MPa 690
360 to 470
Tensile Strength: Yield (Proof), MPa 260
250 to 430

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1340
650
Melting Onset (Solidus), °C 1260
600
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
160
Thermal Expansion, µm/m-K 14
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
2.8
Embodied Carbon, kg CO2/kg material 10
8.4
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 260
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
47 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 170
450 to 1300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 23
36 to 47
Strength to Weight: Bending, points 21
41 to 48
Thermal Diffusivity, mm2/s 2.7
65
Thermal Shock Resistance, points 18
16 to 21

Alloy Composition

Aluminum (Al), % 0
94.8 to 98
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23.5
0.050 to 0.25
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 1.5 to 2.5
0.3 to 0.8
Iron (Fe), % 18 to 21
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 1.0 to 2.0
0.3 to 0.9
Molybdenum (Mo), % 5.5 to 7.5
0
Nickel (Ni), % 36.1 to 51.1
0
Niobium (Nb), % 1.8 to 2.5
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.7 to 1.1
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15