MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. 7129 Aluminum

N06007 nickel belongs to the nickel alloys classification, while 7129 Aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06007 nickel and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 38
9.0 to 9.1
Fatigue Strength, MPa 330
150 to 190
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 470
250 to 260
Tensile Strength: Ultimate (UTS), MPa 690
430
Tensile Strength: Yield (Proof), MPa 260
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1340
630
Melting Onset (Solidus), °C 1260
510
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 10
150
Thermal Expansion, µm/m-K 14
24

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
2.9
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 260
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 170
1050 to 1090
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 23
41
Strength to Weight: Bending, points 21
43 to 44
Thermal Diffusivity, mm2/s 2.7
58
Thermal Shock Resistance, points 18
19

Alloy Composition

Aluminum (Al), % 0
91 to 94
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23.5
0 to 0.1
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 1.5 to 2.5
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 18 to 21
0 to 0.3
Magnesium (Mg), % 0
1.3 to 2.0
Manganese (Mn), % 1.0 to 2.0
0 to 0.1
Molybdenum (Mo), % 5.5 to 7.5
0
Nickel (Ni), % 36.1 to 51.1
0
Niobium (Nb), % 1.8 to 2.5
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.050
Tungsten (W), % 0 to 1.0
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15