MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. A444.0 Aluminum

N06007 nickel belongs to the nickel alloys classification, while A444.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06007 nickel and the bottom bar is A444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 38
18
Fatigue Strength, MPa 330
37
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 690
160
Tensile Strength: Yield (Proof), MPa 260
66

Thermal Properties

Latent Heat of Fusion, J/g 320
500
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1340
630
Melting Onset (Solidus), °C 1260
590
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
160
Thermal Expansion, µm/m-K 14
22

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 10
7.9
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 260
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
24
Resilience: Unit (Modulus of Resilience), kJ/m3 170
31
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 23
17
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 2.7
68
Thermal Shock Resistance, points 18
7.3

Alloy Composition

Aluminum (Al), % 0
91.6 to 93.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 1.5 to 2.5
0 to 0.1
Iron (Fe), % 18 to 21
0 to 0.2
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 1.0 to 2.0
0 to 0.1
Molybdenum (Mo), % 5.5 to 7.5
0
Nickel (Ni), % 36.1 to 51.1
0
Niobium (Nb), % 1.8 to 2.5
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15