MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. A535.0 Aluminum

N06007 nickel belongs to the nickel alloys classification, while A535.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06007 nickel and the bottom bar is A535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 38
9.0
Fatigue Strength, MPa 330
95
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
25
Tensile Strength: Ultimate (UTS), MPa 690
250
Tensile Strength: Yield (Proof), MPa 260
120

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1340
620
Melting Onset (Solidus), °C 1260
550
Specific Heat Capacity, J/kg-K 450
910
Thermal Conductivity, W/m-K 10
100
Thermal Expansion, µm/m-K 14
24

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 10
9.3
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 260
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
19
Resilience: Unit (Modulus of Resilience), kJ/m3 170
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 23
26
Strength to Weight: Bending, points 21
33
Thermal Diffusivity, mm2/s 2.7
42
Thermal Shock Resistance, points 18
11

Alloy Composition

Aluminum (Al), % 0
91.4 to 93.4
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 1.5 to 2.5
0 to 0.1
Iron (Fe), % 18 to 21
0 to 0.2
Magnesium (Mg), % 0
6.5 to 7.5
Manganese (Mn), % 1.0 to 2.0
0.1 to 0.25
Molybdenum (Mo), % 5.5 to 7.5
0
Nickel (Ni), % 36.1 to 51.1
0
Niobium (Nb), % 1.8 to 2.5
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0 to 1.0
0
Residuals, % 0
0 to 0.15