MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. ASTM A285 Carbon Steel

N06007 nickel belongs to the nickel alloys classification, while ASTM A285 carbon steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06007 nickel and the bottom bar is ASTM A285 carbon steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 38
30 to 34
Fatigue Strength, MPa 330
150 to 180
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 79
73
Shear Strength, MPa 470
250 to 290
Tensile Strength: Ultimate (UTS), MPa 690
380 to 450
Tensile Strength: Yield (Proof), MPa 260
190 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 990
400
Melting Completion (Liquidus), °C 1340
1470
Melting Onset (Solidus), °C 1260
1420 to 1430
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 10
53
Thermal Expansion, µm/m-K 14
12

Otherwise Unclassified Properties

Base Metal Price, % relative 60
1.8
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 10
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 260
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
94 to 150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 23
13 to 16
Strength to Weight: Bending, points 21
15 to 17
Thermal Diffusivity, mm2/s 2.7
14
Thermal Shock Resistance, points 18
12 to 14