MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. B390.0 Aluminum

N06007 nickel belongs to the nickel alloys classification, while B390.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06007 nickel and the bottom bar is B390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
76
Elongation at Break, % 38
0.88
Fatigue Strength, MPa 330
170
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
29
Tensile Strength: Ultimate (UTS), MPa 690
320
Tensile Strength: Yield (Proof), MPa 260
250

Thermal Properties

Latent Heat of Fusion, J/g 320
640
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1340
580
Melting Onset (Solidus), °C 1260
580
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 10
130
Thermal Expansion, µm/m-K 14
20

Otherwise Unclassified Properties

Base Metal Price, % relative 60
11
Density, g/cm3 8.4
2.8
Embodied Carbon, kg CO2/kg material 10
7.3
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 260
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 170
410
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 23
32
Strength to Weight: Bending, points 21
38
Thermal Diffusivity, mm2/s 2.7
55
Thermal Shock Resistance, points 18
15

Alloy Composition

Aluminum (Al), % 0
72.7 to 79.6
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 1.5 to 2.5
4.0 to 5.0
Iron (Fe), % 18 to 21
0 to 1.3
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 1.0 to 2.0
0 to 0.5
Molybdenum (Mo), % 5.5 to 7.5
0
Nickel (Ni), % 36.1 to 51.1
0 to 0.1
Niobium (Nb), % 1.8 to 2.5
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
16 to 18
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.2