MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. C355.0 Aluminum

N06007 nickel belongs to the nickel alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06007 nickel and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 38
2.7 to 3.8
Fatigue Strength, MPa 330
76 to 84
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 690
290 to 310
Tensile Strength: Yield (Proof), MPa 260
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1340
620
Melting Onset (Solidus), °C 1260
570
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 10
150
Thermal Expansion, µm/m-K 14
22

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 10
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 260
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 170
290 to 380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 23
30 to 32
Strength to Weight: Bending, points 21
36 to 37
Thermal Diffusivity, mm2/s 2.7
60
Thermal Shock Resistance, points 18
13 to 14

Alloy Composition

Aluminum (Al), % 0
91.7 to 94.1
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 1.5 to 2.5
1.0 to 1.5
Iron (Fe), % 18 to 21
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 1.0 to 2.0
0 to 0.1
Molybdenum (Mo), % 5.5 to 7.5
0
Nickel (Ni), % 36.1 to 51.1
0
Niobium (Nb), % 1.8 to 2.5
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
4.5 to 5.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15