N06007 Nickel vs. EN 1.0234 Steel
N06007 nickel belongs to the nickel alloys classification, while EN 1.0234 steel belongs to the iron alloys. They have a modest 20% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is N06007 nickel and the bottom bar is EN 1.0234 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 38 | |
12 to 29 |
Fatigue Strength, MPa | 330 | |
170 to 270 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 79 | |
73 |
Shear Strength, MPa | 470 | |
260 to 300 |
Tensile Strength: Ultimate (UTS), MPa | 690 | |
350 to 480 |
Tensile Strength: Yield (Proof), MPa | 260 | |
220 to 410 |
Thermal Properties
Latent Heat of Fusion, J/g | 320 | |
250 |
Maximum Temperature: Mechanical, °C | 990 | |
400 |
Melting Completion (Liquidus), °C | 1340 | |
1460 |
Melting Onset (Solidus), °C | 1260 | |
1420 |
Specific Heat Capacity, J/kg-K | 450 | |
470 |
Thermal Conductivity, W/m-K | 10 | |
53 |
Thermal Expansion, µm/m-K | 14 | |
12 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 60 | |
1.8 |
Density, g/cm3 | 8.4 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 10 | |
1.4 |
Embodied Energy, MJ/kg | 140 | |
18 |
Embodied Water, L/kg | 260 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 200 | |
36 to 130 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 170 | |
130 to 440 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 23 | |
24 |
Strength to Weight: Axial, points | 23 | |
12 to 17 |
Strength to Weight: Bending, points | 21 | |
14 to 17 |
Thermal Diffusivity, mm2/s | 2.7 | |
14 |
Thermal Shock Resistance, points | 18 | |
11 to 15 |
Alloy Composition
Aluminum (Al), % | 0 | |
0.020 to 0.060 |
Carbon (C), % | 0 to 0.050 | |
0.13 to 0.17 |
Chromium (Cr), % | 21 to 23.5 | |
0 |
Cobalt (Co), % | 0 to 2.5 | |
0 |
Copper (Cu), % | 1.5 to 2.5 | |
0 |
Iron (Fe), % | 18 to 21 | |
99.02 to 99.5 |
Manganese (Mn), % | 1.0 to 2.0 | |
0.35 to 0.6 |
Molybdenum (Mo), % | 5.5 to 7.5 | |
0 |
Nickel (Ni), % | 36.1 to 51.1 | |
0 |
Niobium (Nb), % | 1.8 to 2.5 | |
0 |
Nitrogen (N), % | 0.15 to 0.25 | |
0 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.025 |
Silicon (Si), % | 0 to 1.0 | |
0 to 0.1 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.025 |
Tungsten (W), % | 0 to 1.0 | |
0 |