MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. EN AC-45300 Aluminum

N06007 nickel belongs to the nickel alloys classification, while EN AC-45300 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06007 nickel and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 38
1.0 to 2.8
Fatigue Strength, MPa 330
59 to 72
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 690
220 to 290
Tensile Strength: Yield (Proof), MPa 260
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1340
630
Melting Onset (Solidus), °C 1260
590
Specific Heat Capacity, J/kg-K 450
890
Thermal Conductivity, W/m-K 10
150
Thermal Expansion, µm/m-K 14
22

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 10
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 260
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 170
160 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 23
23 to 29
Strength to Weight: Bending, points 21
30 to 35
Thermal Diffusivity, mm2/s 2.7
60
Thermal Shock Resistance, points 18
10 to 13

Alloy Composition

Aluminum (Al), % 0
90.2 to 94.2
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 1.5 to 2.5
1.0 to 1.5
Iron (Fe), % 18 to 21
0 to 0.65
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.35 to 0.65
Manganese (Mn), % 1.0 to 2.0
0 to 0.55
Molybdenum (Mo), % 5.5 to 7.5
0
Nickel (Ni), % 36.1 to 51.1
0 to 0.25
Niobium (Nb), % 1.8 to 2.5
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
4.5 to 5.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15