MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. EN AC-46100 Aluminum

N06007 nickel belongs to the nickel alloys classification, while EN AC-46100 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06007 nickel and the bottom bar is EN AC-46100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 38
1.0
Fatigue Strength, MPa 330
110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
28
Tensile Strength: Ultimate (UTS), MPa 690
270
Tensile Strength: Yield (Proof), MPa 260
160

Thermal Properties

Latent Heat of Fusion, J/g 320
550
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1340
600
Melting Onset (Solidus), °C 1260
540
Specific Heat Capacity, J/kg-K 450
890
Thermal Conductivity, W/m-K 10
110
Thermal Expansion, µm/m-K 14
21

Otherwise Unclassified Properties

Base Metal Price, % relative 60
10
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 10
7.6
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 260
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 170
170
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 23
27
Strength to Weight: Bending, points 21
34
Thermal Diffusivity, mm2/s 2.7
44
Thermal Shock Resistance, points 18
12

Alloy Composition

Aluminum (Al), % 0
80.4 to 88.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23.5
0 to 0.15
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 1.5 to 2.5
1.5 to 2.5
Iron (Fe), % 18 to 21
0 to 1.1
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0
0 to 0.3
Manganese (Mn), % 1.0 to 2.0
0 to 0.55
Molybdenum (Mo), % 5.5 to 7.5
0
Nickel (Ni), % 36.1 to 51.1
0 to 0.45
Niobium (Nb), % 1.8 to 2.5
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
10 to 12
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 1.7
Residuals, % 0
0 to 0.25