MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. EN AC-51300 Aluminum

N06007 nickel belongs to the nickel alloys classification, while EN AC-51300 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06007 nickel and the bottom bar is EN AC-51300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 38
3.7
Fatigue Strength, MPa 330
78
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
25
Tensile Strength: Ultimate (UTS), MPa 690
190
Tensile Strength: Yield (Proof), MPa 260
110

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1340
640
Melting Onset (Solidus), °C 1260
600
Specific Heat Capacity, J/kg-K 450
910
Thermal Conductivity, W/m-K 10
110
Thermal Expansion, µm/m-K 14
24

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 10
9.1
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 260
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
6.1
Resilience: Unit (Modulus of Resilience), kJ/m3 170
87
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 23
20
Strength to Weight: Bending, points 21
28
Thermal Diffusivity, mm2/s 2.7
45
Thermal Shock Resistance, points 18
8.6

Alloy Composition

Aluminum (Al), % 0
91.4 to 95.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 1.5 to 2.5
0 to 0.1
Iron (Fe), % 18 to 21
0 to 0.55
Magnesium (Mg), % 0
4.5 to 6.5
Manganese (Mn), % 1.0 to 2.0
0 to 0.45
Molybdenum (Mo), % 5.5 to 7.5
0
Nickel (Ni), % 36.1 to 51.1
0
Niobium (Nb), % 1.8 to 2.5
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15