MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. C19800 Copper

N06007 nickel belongs to the nickel alloys classification, while C19800 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06007 nickel and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 38
9.0 to 12
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
43
Shear Strength, MPa 470
260 to 330
Tensile Strength: Ultimate (UTS), MPa 690
430 to 550
Tensile Strength: Yield (Proof), MPa 260
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 990
200
Melting Completion (Liquidus), °C 1340
1070
Melting Onset (Solidus), °C 1260
1050
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 10
260
Thermal Expansion, µm/m-K 14
18

Otherwise Unclassified Properties

Base Metal Price, % relative 60
30
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 10
2.8
Embodied Energy, MJ/kg 140
43
Embodied Water, L/kg 260
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 170
770 to 1320
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 23
14 to 17
Strength to Weight: Bending, points 21
14 to 17
Thermal Diffusivity, mm2/s 2.7
75
Thermal Shock Resistance, points 18
15 to 20

Alloy Composition

Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 1.5 to 2.5
95.7 to 99.47
Iron (Fe), % 18 to 21
0.020 to 0.5
Magnesium (Mg), % 0
0.1 to 1.0
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 5.5 to 7.5
0
Nickel (Ni), % 36.1 to 51.1
0
Niobium (Nb), % 1.8 to 2.5
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0.010 to 0.1
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.1 to 1.0
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0.3 to 1.5
Residuals, % 0
0 to 0.2