MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. C70260 Copper

N06007 nickel belongs to the nickel alloys classification, while C70260 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06007 nickel and the bottom bar is C70260 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 38
9.5 to 19
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
44
Shear Strength, MPa 470
320 to 450
Tensile Strength: Ultimate (UTS), MPa 690
520 to 760
Tensile Strength: Yield (Proof), MPa 260
410 to 650

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 990
200
Melting Completion (Liquidus), °C 1340
1060
Melting Onset (Solidus), °C 1260
1040
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 10
160
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Base Metal Price, % relative 60
31
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 140
43
Embodied Water, L/kg 260
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
46 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 170
710 to 1810
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 23
16 to 24
Strength to Weight: Bending, points 21
16 to 21
Thermal Diffusivity, mm2/s 2.7
45
Thermal Shock Resistance, points 18
18 to 27

Alloy Composition

Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 1.5 to 2.5
95.8 to 98.8
Iron (Fe), % 18 to 21
0
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 5.5 to 7.5
0
Nickel (Ni), % 36.1 to 51.1
1.0 to 3.0
Niobium (Nb), % 1.8 to 2.5
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
0.2 to 0.7
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 0 to 1.0
0
Residuals, % 0
0 to 0.5