MakeItFrom.com
Menu (ESC)

N06007 Nickel vs. C96800 Copper

N06007 nickel belongs to the nickel alloys classification, while C96800 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N06007 nickel and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 38
3.4
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
46
Tensile Strength: Ultimate (UTS), MPa 690
1010
Tensile Strength: Yield (Proof), MPa 260
860

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 990
220
Melting Completion (Liquidus), °C 1340
1120
Melting Onset (Solidus), °C 1260
1060
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 10
52
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Base Metal Price, % relative 60
34
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 10
3.4
Embodied Energy, MJ/kg 140
52
Embodied Water, L/kg 260
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
33
Resilience: Unit (Modulus of Resilience), kJ/m3 170
3000
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 23
32
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 2.7
15
Thermal Shock Resistance, points 18
35

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 21 to 23.5
0
Cobalt (Co), % 0 to 2.5
0
Copper (Cu), % 1.5 to 2.5
87.1 to 90.5
Iron (Fe), % 18 to 21
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 1.0 to 2.0
0.050 to 0.3
Molybdenum (Mo), % 5.5 to 7.5
0
Nickel (Ni), % 36.1 to 51.1
9.5 to 10.5
Niobium (Nb), % 1.8 to 2.5
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.0050
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0 to 0.0025
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5