MakeItFrom.com
Menu (ESC)

N06025 Nickel vs. 392.0 Aluminum

N06025 nickel belongs to the nickel alloys classification, while 392.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06025 nickel and the bottom bar is 392.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
75
Elongation at Break, % 32
0.86
Fatigue Strength, MPa 220
190
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
28
Tensile Strength: Ultimate (UTS), MPa 760
290
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 320
670
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1350
670
Melting Onset (Solidus), °C 1300
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
90

Otherwise Unclassified Properties

Base Metal Price, % relative 50
10
Density, g/cm3 8.2
2.5
Embodied Carbon, kg CO2/kg material 8.4
7.5
Embodied Energy, MJ/kg 120
140
Embodied Water, L/kg 290
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
2.4
Resilience: Unit (Modulus of Resilience), kJ/m3 240
490
Stiffness to Weight: Axial, points 13
17
Stiffness to Weight: Bending, points 24
56
Strength to Weight: Axial, points 26
32
Strength to Weight: Bending, points 22
39
Thermal Diffusivity, mm2/s 2.9
60
Thermal Shock Resistance, points 21
15

Alloy Composition

Aluminum (Al), % 1.8 to 2.4
73.9 to 80.6
Carbon (C), % 0.15 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.1
0.4 to 0.8
Iron (Fe), % 8.0 to 11
0 to 1.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 0.15
0.2 to 0.6
Nickel (Ni), % 59.2 to 65.9
0 to 0.5
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
18 to 20
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0.1 to 0.2
0 to 0.2
Yttrium (Y), % 0.050 to 0.12
0
Zinc (Zn), % 0.010 to 0.1
0 to 0.5
Residuals, % 0
0 to 0.5