MakeItFrom.com
Menu (ESC)

N06025 Nickel vs. 4015 Aluminum

N06025 nickel belongs to the nickel alloys classification, while 4015 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06025 nickel and the bottom bar is 4015 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 32
1.1 to 23
Fatigue Strength, MPa 220
46 to 71
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 500
82 to 120
Tensile Strength: Ultimate (UTS), MPa 760
130 to 220
Tensile Strength: Yield (Proof), MPa 310
50 to 200

Thermal Properties

Latent Heat of Fusion, J/g 320
420
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1300
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 11
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
41
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
130

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 8.4
8.1
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 290
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
2.4 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 240
18 to 290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 26
13 to 22
Strength to Weight: Bending, points 22
21 to 30
Thermal Diffusivity, mm2/s 2.9
66
Thermal Shock Resistance, points 21
5.7 to 9.7

Alloy Composition

Aluminum (Al), % 1.8 to 2.4
94.9 to 97.9
Carbon (C), % 0.15 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 8.0 to 11
0 to 0.7
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 0 to 0.15
0.6 to 1.2
Nickel (Ni), % 59.2 to 65.9
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
1.4 to 2.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.1 to 0.2
0
Yttrium (Y), % 0.050 to 0.12
0
Zinc (Zn), % 0.010 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.15