MakeItFrom.com
Menu (ESC)

N06025 Nickel vs. 7076 Aluminum

N06025 nickel belongs to the nickel alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06025 nickel and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 32
6.2
Fatigue Strength, MPa 220
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
27
Shear Strength, MPa 500
310
Tensile Strength: Ultimate (UTS), MPa 760
530
Tensile Strength: Yield (Proof), MPa 310
460

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1350
630
Melting Onset (Solidus), °C 1300
460
Specific Heat Capacity, J/kg-K 480
860
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
35
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.2
3.0
Embodied Carbon, kg CO2/kg material 8.4
8.0
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 290
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
31
Resilience: Unit (Modulus of Resilience), kJ/m3 240
1510
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 26
49
Strength to Weight: Bending, points 22
48
Thermal Diffusivity, mm2/s 2.9
54
Thermal Shock Resistance, points 21
23

Alloy Composition

Aluminum (Al), % 1.8 to 2.4
86.9 to 91.2
Carbon (C), % 0.15 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.1
0.3 to 1.0
Iron (Fe), % 8.0 to 11
0 to 0.6
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0 to 0.15
0.3 to 0.8
Nickel (Ni), % 59.2 to 65.9
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.1 to 0.2
0 to 0.2
Yttrium (Y), % 0.050 to 0.12
0
Zinc (Zn), % 0.010 to 0.1
7.0 to 8.0
Residuals, % 0
0 to 0.15