MakeItFrom.com
Menu (ESC)

N06025 Nickel vs. CC492K Bronze

N06025 nickel belongs to the nickel alloys classification, while CC492K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06025 nickel and the bottom bar is CC492K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 32
14
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 760
280
Tensile Strength: Yield (Proof), MPa 310
150

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1350
1000
Melting Onset (Solidus), °C 1300
900
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 11
73
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
13
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
13

Otherwise Unclassified Properties

Base Metal Price, % relative 50
33
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 8.4
3.4
Embodied Energy, MJ/kg 120
54
Embodied Water, L/kg 290
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
33
Resilience: Unit (Modulus of Resilience), kJ/m3 240
100
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 26
8.7
Strength to Weight: Bending, points 22
11
Thermal Diffusivity, mm2/s 2.9
23
Thermal Shock Resistance, points 21
10

Alloy Composition

Aluminum (Al), % 1.8 to 2.4
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.15 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.1
83 to 89
Iron (Fe), % 8.0 to 11
0 to 0.2
Lead (Pb), % 0
2.5 to 3.5
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 59.2 to 65.9
0 to 2.0
Phosphorus (P), % 0 to 0.020
0 to 0.1
Silicon (Si), % 0 to 0.5
0 to 0.010
Sulfur (S), % 0 to 0.010
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 0.1 to 0.2
0
Yttrium (Y), % 0.050 to 0.12
0
Zinc (Zn), % 0.010 to 0.1
1.5 to 3.0