MakeItFrom.com
Menu (ESC)

N06025 Nickel vs. C28000 Muntz Metal

N06025 nickel belongs to the nickel alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06025 nickel and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 32
10 to 45
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Shear Strength, MPa 500
230 to 330
Tensile Strength: Ultimate (UTS), MPa 760
330 to 610
Tensile Strength: Yield (Proof), MPa 310
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 1000
120
Melting Completion (Liquidus), °C 1350
900
Melting Onset (Solidus), °C 1300
900
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
28
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
31

Otherwise Unclassified Properties

Base Metal Price, % relative 50
23
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 120
46
Embodied Water, L/kg 290
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 240
110 to 670
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 26
11 to 21
Strength to Weight: Bending, points 22
13 to 20
Thermal Diffusivity, mm2/s 2.9
40
Thermal Shock Resistance, points 21
11 to 20

Alloy Composition

Aluminum (Al), % 1.8 to 2.4
0
Carbon (C), % 0.15 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.1
59 to 63
Iron (Fe), % 8.0 to 11
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 59.2 to 65.9
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.1 to 0.2
0
Yttrium (Y), % 0.050 to 0.12
0
Zinc (Zn), % 0.010 to 0.1
36.3 to 41
Residuals, % 0
0 to 0.3