MakeItFrom.com
Menu (ESC)

N06025 Nickel vs. C64700 Bronze

N06025 nickel belongs to the nickel alloys classification, while C64700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N06025 nickel and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 32
9.0
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 500
390
Tensile Strength: Ultimate (UTS), MPa 760
660
Tensile Strength: Yield (Proof), MPa 310
560

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 1000
200
Melting Completion (Liquidus), °C 1350
1090
Melting Onset (Solidus), °C 1300
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 11
210
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
38

Otherwise Unclassified Properties

Base Metal Price, % relative 50
31
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 8.4
2.7
Embodied Energy, MJ/kg 120
43
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
57
Resilience: Unit (Modulus of Resilience), kJ/m3 240
1370
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 26
21
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 2.9
59
Thermal Shock Resistance, points 21
24

Alloy Composition

Aluminum (Al), % 1.8 to 2.4
0
Carbon (C), % 0.15 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.1
95.8 to 98
Iron (Fe), % 8.0 to 11
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 59.2 to 65.9
1.6 to 2.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0.4 to 0.8
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.1 to 0.2
0
Yttrium (Y), % 0.050 to 0.12
0
Zinc (Zn), % 0.010 to 0.1
0 to 0.5
Residuals, % 0
0 to 0.5