MakeItFrom.com
Menu (ESC)

N06025 Nickel vs. C72900 Copper-nickel

N06025 nickel belongs to the nickel alloys classification, while C72900 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is N06025 nickel and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 32
6.0 to 20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
45
Shear Strength, MPa 500
540 to 630
Tensile Strength: Ultimate (UTS), MPa 760
870 to 1080
Tensile Strength: Yield (Proof), MPa 310
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 1000
210
Melting Completion (Liquidus), °C 1350
1120
Melting Onset (Solidus), °C 1300
950
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 11
29
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 50
39
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 8.4
4.6
Embodied Energy, MJ/kg 120
72
Embodied Water, L/kg 290
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 240
2030 to 3490
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 26
27 to 34
Strength to Weight: Bending, points 22
23 to 27
Thermal Diffusivity, mm2/s 2.9
8.6
Thermal Shock Resistance, points 21
31 to 38

Alloy Composition

Aluminum (Al), % 1.8 to 2.4
0
Carbon (C), % 0.15 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.1
74.1 to 78
Iron (Fe), % 8.0 to 11
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 0.15
0 to 0.3
Nickel (Ni), % 59.2 to 65.9
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0.1 to 0.2
0
Yttrium (Y), % 0.050 to 0.12
0
Zinc (Zn), % 0.010 to 0.1
0 to 0.5
Residuals, % 0
0 to 0.3