MakeItFrom.com
Menu (ESC)

N06025 Nickel vs. C93600 Bronze

N06025 nickel belongs to the nickel alloys classification, while C93600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is N06025 nickel and the bottom bar is C93600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
99
Elongation at Break, % 32
14
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 76
36
Tensile Strength: Ultimate (UTS), MPa 760
260
Tensile Strength: Yield (Proof), MPa 310
140

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 1000
150
Melting Completion (Liquidus), °C 1350
940
Melting Onset (Solidus), °C 1300
840
Specific Heat Capacity, J/kg-K 480
350
Thermal Conductivity, W/m-K 11
49
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
11
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
11

Otherwise Unclassified Properties

Base Metal Price, % relative 50
31
Density, g/cm3 8.2
9.0
Embodied Carbon, kg CO2/kg material 8.4
3.2
Embodied Energy, MJ/kg 120
51
Embodied Water, L/kg 290
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
31
Resilience: Unit (Modulus of Resilience), kJ/m3 240
98
Stiffness to Weight: Axial, points 13
6.1
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 26
7.9
Strength to Weight: Bending, points 22
9.9
Thermal Diffusivity, mm2/s 2.9
16
Thermal Shock Resistance, points 21
9.8

Alloy Composition

Aluminum (Al), % 1.8 to 2.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.55
Carbon (C), % 0.15 to 0.25
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0 to 0.1
79 to 83
Iron (Fe), % 8.0 to 11
0 to 0.2
Lead (Pb), % 0
11 to 13
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 59.2 to 65.9
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.080
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 0.1 to 0.2
0
Yttrium (Y), % 0.050 to 0.12
0
Zinc (Zn), % 0.010 to 0.1
0 to 1.0
Residuals, % 0
0 to 0.7