MakeItFrom.com
Menu (ESC)

N06035 Nickel vs. 7076 Aluminum

N06035 nickel belongs to the nickel alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06035 nickel and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 34
6.2
Fatigue Strength, MPa 200
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 84
27
Shear Strength, MPa 440
310
Tensile Strength: Ultimate (UTS), MPa 660
530
Tensile Strength: Yield (Proof), MPa 270
460

Thermal Properties

Latent Heat of Fusion, J/g 340
380
Maximum Temperature: Mechanical, °C 1030
170
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1390
460
Specific Heat Capacity, J/kg-K 450
860
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
3.0
Embodied Carbon, kg CO2/kg material 10
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 330
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
31
Resilience: Unit (Modulus of Resilience), kJ/m3 170
1510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 22
49
Strength to Weight: Bending, points 20
48
Thermal Shock Resistance, points 17
23

Alloy Composition

Aluminum (Al), % 0 to 0.4
86.9 to 91.2
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 32.3 to 34.3
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0.3 to 1.0
Iron (Fe), % 0 to 2.0
0 to 0.6
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0 to 0.5
0.3 to 0.8
Molybdenum (Mo), % 7.6 to 9.0
0
Nickel (Ni), % 51.1 to 60.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 0.6
0
Vanadium (V), % 0 to 0.2
0
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.15