MakeItFrom.com
Menu (ESC)

N06035 Nickel vs. 7129 Aluminum

N06035 nickel belongs to the nickel alloys classification, while 7129 Aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06035 nickel and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 34
9.0 to 9.1
Fatigue Strength, MPa 200
150 to 190
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 84
26
Shear Strength, MPa 440
250 to 260
Tensile Strength: Ultimate (UTS), MPa 660
430
Tensile Strength: Yield (Proof), MPa 270
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 340
380
Maximum Temperature: Mechanical, °C 1030
180
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1390
510
Specific Heat Capacity, J/kg-K 450
880
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
2.9
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 330
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 170
1050 to 1090
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 22
41
Strength to Weight: Bending, points 20
43 to 44
Thermal Shock Resistance, points 17
19

Alloy Composition

Aluminum (Al), % 0 to 0.4
91 to 94
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 32.3 to 34.3
0 to 0.1
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 2.0
0 to 0.3
Magnesium (Mg), % 0
1.3 to 2.0
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 7.6 to 9.0
0
Nickel (Ni), % 51.1 to 60.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.6
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.050
Tungsten (W), % 0 to 0.6
0
Vanadium (V), % 0 to 0.2
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15