MakeItFrom.com
Menu (ESC)

N06045 Nickel vs. 2218 Aluminum

N06045 nickel belongs to the nickel alloys classification, while 2218 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06045 nickel and the bottom bar is 2218 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 37
6.8 to 10
Fatigue Strength, MPa 210
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 470
210 to 250
Tensile Strength: Ultimate (UTS), MPa 690
330 to 430
Tensile Strength: Yield (Proof), MPa 270
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 350
390
Maximum Temperature: Mechanical, °C 1010
220
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1300
510
Specific Heat Capacity, J/kg-K 480
870
Thermal Expansion, µm/m-K 13
22

Otherwise Unclassified Properties

Base Metal Price, % relative 42
11
Density, g/cm3 8.0
3.1
Embodied Carbon, kg CO2/kg material 6.9
8.2
Embodied Energy, MJ/kg 98
150
Embodied Water, L/kg 250
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
27 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 180
450 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 24
30 to 39
Strength to Weight: Bending, points 22
34 to 41
Thermal Shock Resistance, points 18
15 to 19

Alloy Composition

Aluminum (Al), % 0
88.8 to 93.6
Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0 to 0.1
Copper (Cu), % 0 to 0.3
3.5 to 4.5
Iron (Fe), % 21 to 25
0 to 1.0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.0
0 to 0.2
Nickel (Ni), % 45 to 50.4
1.7 to 2.3
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
0 to 0.9
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15