MakeItFrom.com
Menu (ESC)

N06045 Nickel vs. 3004 Aluminum

N06045 nickel belongs to the nickel alloys classification, while 3004 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06045 nickel and the bottom bar is 3004 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 37
1.1 to 19
Fatigue Strength, MPa 210
55 to 120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 470
100 to 180
Tensile Strength: Ultimate (UTS), MPa 690
170 to 310
Tensile Strength: Yield (Proof), MPa 270
68 to 270

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1350
650
Melting Onset (Solidus), °C 1300
630
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 42
9.5
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 6.9
8.3
Embodied Energy, MJ/kg 98
150
Embodied Water, L/kg 250
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
3.2 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 180
33 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 24
18 to 31
Strength to Weight: Bending, points 22
25 to 37
Thermal Shock Resistance, points 18
7.6 to 13

Alloy Composition

Aluminum (Al), % 0
95.6 to 98.2
Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0 to 0.3
0 to 0.25
Iron (Fe), % 21 to 25
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.3
Manganese (Mn), % 0 to 1.0
1.0 to 1.5
Nickel (Ni), % 45 to 50.4
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
0 to 0.3
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15