MakeItFrom.com
Menu (ESC)

N06045 Nickel vs. 364.0 Aluminum

N06045 nickel belongs to the nickel alloys classification, while 364.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06045 nickel and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 37
7.5
Fatigue Strength, MPa 210
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 470
200
Tensile Strength: Ultimate (UTS), MPa 690
300
Tensile Strength: Yield (Proof), MPa 270
160

Thermal Properties

Latent Heat of Fusion, J/g 350
520
Maximum Temperature: Mechanical, °C 1010
190
Melting Completion (Liquidus), °C 1350
600
Melting Onset (Solidus), °C 1300
560
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 42
11
Density, g/cm3 8.0
2.6
Embodied Carbon, kg CO2/kg material 6.9
8.0
Embodied Energy, MJ/kg 98
150
Embodied Water, L/kg 250
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
19
Resilience: Unit (Modulus of Resilience), kJ/m3 180
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 24
31
Strength to Weight: Bending, points 22
38
Thermal Shock Resistance, points 18
14

Alloy Composition

Aluminum (Al), % 0
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0.25 to 0.5
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 21 to 25
0 to 1.5
Magnesium (Mg), % 0
0.2 to 0.4
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 45 to 50.4
0 to 0.15
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
7.5 to 9.5
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15