MakeItFrom.com
Menu (ESC)

N06045 Nickel vs. 4115 Aluminum

N06045 nickel belongs to the nickel alloys classification, while 4115 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06045 nickel and the bottom bar is 4115 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 37
1.1 to 11
Fatigue Strength, MPa 210
39 to 76
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 470
71 to 130
Tensile Strength: Ultimate (UTS), MPa 690
120 to 220
Tensile Strength: Yield (Proof), MPa 270
39 to 190

Thermal Properties

Latent Heat of Fusion, J/g 350
420
Maximum Temperature: Mechanical, °C 1010
160
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1300
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 42
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 6.9
8.1
Embodied Energy, MJ/kg 98
150
Embodied Water, L/kg 250
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
2.1 to 10
Resilience: Unit (Modulus of Resilience), kJ/m3 180
11 to 270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 24
12 to 23
Strength to Weight: Bending, points 22
20 to 30
Thermal Shock Resistance, points 18
5.2 to 9.9

Alloy Composition

Aluminum (Al), % 0
94.6 to 97.4
Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0 to 0.3
0.1 to 0.5
Iron (Fe), % 21 to 25
0 to 0.7
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 0 to 1.0
0.6 to 1.2
Nickel (Ni), % 45 to 50.4
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
1.8 to 2.2
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15