MakeItFrom.com
Menu (ESC)

N06045 Nickel vs. 6012 Aluminum

N06045 nickel belongs to the nickel alloys classification, while 6012 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06045 nickel and the bottom bar is 6012 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 37
9.1 to 11
Fatigue Strength, MPa 210
55 to 100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 470
130 to 190
Tensile Strength: Ultimate (UTS), MPa 690
220 to 320
Tensile Strength: Yield (Proof), MPa 270
110 to 260

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1300
570
Specific Heat Capacity, J/kg-K 480
890
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 42
9.5
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 6.9
8.2
Embodied Energy, MJ/kg 98
150
Embodied Water, L/kg 250
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
21 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 180
94 to 480
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 24
22 to 32
Strength to Weight: Bending, points 22
29 to 37
Thermal Shock Resistance, points 18
10 to 14

Alloy Composition

Aluminum (Al), % 0
92.2 to 98
Bismuth (Bi), % 0
0 to 0.7
Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 21 to 25
0 to 0.5
Lead (Pb), % 0
0.4 to 2.0
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 1.0
0.4 to 1.0
Nickel (Ni), % 45 to 50.4
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
0.6 to 1.4
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15