MakeItFrom.com
Menu (ESC)

N06045 Nickel vs. 6063 Aluminum

N06045 nickel belongs to the nickel alloys classification, while 6063 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06045 nickel and the bottom bar is 6063 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 37
7.3 to 21
Fatigue Strength, MPa 210
39 to 95
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 470
70 to 190
Tensile Strength: Ultimate (UTS), MPa 690
110 to 300
Tensile Strength: Yield (Proof), MPa 270
49 to 270

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 1010
160
Melting Completion (Liquidus), °C 1350
650
Melting Onset (Solidus), °C 1300
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 42
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 6.9
8.3
Embodied Energy, MJ/kg 98
150
Embodied Water, L/kg 250
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
13 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 180
18 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 24
11 to 31
Strength to Weight: Bending, points 22
18 to 37
Thermal Shock Resistance, points 18
4.8 to 13

Alloy Composition

Aluminum (Al), % 0
97.5 to 99.4
Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0 to 0.1
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 21 to 25
0 to 0.35
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 45 to 50.4
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
0.2 to 0.6
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15