MakeItFrom.com
Menu (ESC)

N06045 Nickel vs. 7108 Aluminum

N06045 nickel belongs to the nickel alloys classification, while 7108 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06045 nickel and the bottom bar is 7108 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 37
11
Fatigue Strength, MPa 210
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 470
210
Tensile Strength: Ultimate (UTS), MPa 690
350
Tensile Strength: Yield (Proof), MPa 270
290

Thermal Properties

Latent Heat of Fusion, J/g 350
380
Maximum Temperature: Mechanical, °C 1010
210
Melting Completion (Liquidus), °C 1350
630
Melting Onset (Solidus), °C 1300
530
Specific Heat Capacity, J/kg-K 480
880
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 42
9.5
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 6.9
8.3
Embodied Energy, MJ/kg 98
150
Embodied Water, L/kg 250
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
38
Resilience: Unit (Modulus of Resilience), kJ/m3 180
620
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 24
34
Strength to Weight: Bending, points 22
38
Thermal Shock Resistance, points 18
16

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.7
Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0 to 0.3
0 to 0.050
Iron (Fe), % 21 to 25
0 to 0.1
Magnesium (Mg), % 0
0.7 to 1.4
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 45 to 50.4
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
0 to 0.1
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
4.5 to 5.5
Zirconium (Zr), % 0
0.12 to 0.25
Residuals, % 0
0 to 0.15