MakeItFrom.com
Menu (ESC)

N06045 Nickel vs. 8176 Aluminum

N06045 nickel belongs to the nickel alloys classification, while 8176 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06045 nickel and the bottom bar is 8176 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 37
15
Fatigue Strength, MPa 210
59
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 470
70
Tensile Strength: Ultimate (UTS), MPa 690
160
Tensile Strength: Yield (Proof), MPa 270
95

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1350
660
Melting Onset (Solidus), °C 1300
650
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 42
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 6.9
8.2
Embodied Energy, MJ/kg 98
150
Embodied Water, L/kg 250
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
21
Resilience: Unit (Modulus of Resilience), kJ/m3 180
66
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 24
16
Strength to Weight: Bending, points 22
24
Thermal Shock Resistance, points 18
7.0

Alloy Composition

Aluminum (Al), % 0
98.6 to 99.6
Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0 to 0.3
0
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 21 to 25
0.4 to 1.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 45 to 50.4
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
0.030 to 0.15
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15