MakeItFrom.com
Menu (ESC)

N06045 Nickel vs. A357.0 Aluminum

N06045 nickel belongs to the nickel alloys classification, while A357.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06045 nickel and the bottom bar is A357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 37
3.7
Fatigue Strength, MPa 210
100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 470
240
Tensile Strength: Ultimate (UTS), MPa 690
350
Tensile Strength: Yield (Proof), MPa 270
270

Thermal Properties

Latent Heat of Fusion, J/g 350
500
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1350
610
Melting Onset (Solidus), °C 1300
560
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 42
12
Density, g/cm3 8.0
2.6
Embodied Carbon, kg CO2/kg material 6.9
8.2
Embodied Energy, MJ/kg 98
150
Embodied Water, L/kg 250
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
12
Resilience: Unit (Modulus of Resilience), kJ/m3 180
520
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 24
38
Strength to Weight: Bending, points 22
43
Thermal Shock Resistance, points 18
17

Alloy Composition

Aluminum (Al), % 0
90.8 to 93
Beryllium (Be), % 0
0.040 to 0.070
Carbon (C), % 0.050 to 0.12
0
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 21 to 25
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 45 to 50.4
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
6.5 to 7.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0.040 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15