MakeItFrom.com
Menu (ESC)

N06045 Nickel vs. Grade 19 Titanium

N06045 nickel belongs to the nickel alloys classification, while grade 19 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N06045 nickel and the bottom bar is grade 19 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 37
5.6 to 17
Fatigue Strength, MPa 210
550 to 620
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
47
Shear Strength, MPa 470
550 to 750
Tensile Strength: Ultimate (UTS), MPa 690
890 to 1300
Tensile Strength: Yield (Proof), MPa 270
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 1010
370
Melting Completion (Liquidus), °C 1350
1660
Melting Onset (Solidus), °C 1300
1600
Specific Heat Capacity, J/kg-K 480
520
Thermal Expansion, µm/m-K 13
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 42
45
Density, g/cm3 8.0
5.0
Embodied Carbon, kg CO2/kg material 6.9
47
Embodied Energy, MJ/kg 98
760
Embodied Water, L/kg 250
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 180
3040 to 5530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
33
Strength to Weight: Axial, points 24
49 to 72
Strength to Weight: Bending, points 22
41 to 53
Thermal Shock Resistance, points 18
57 to 83

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.0
Carbon (C), % 0.050 to 0.12
0 to 0.050
Cerium (Ce), % 0.030 to 0.090
0
Chromium (Cr), % 26 to 29
5.5 to 6.5
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 21 to 25
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 45 to 50.4
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 2.5 to 3.0
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
71.1 to 77
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4