MakeItFrom.com
Menu (ESC)

N06058 Nickel vs. 2007 Aluminum

N06058 nickel belongs to the nickel alloys classification, while 2007 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06058 nickel and the bottom bar is 2007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
71
Elongation at Break, % 45
5.6 to 8.0
Fatigue Strength, MPa 350
91 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 86
27
Shear Strength, MPa 600
220 to 250
Tensile Strength: Ultimate (UTS), MPa 860
370 to 420
Tensile Strength: Yield (Proof), MPa 410
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1540
640
Melting Onset (Solidus), °C 1490
510
Specific Heat Capacity, J/kg-K 420
870
Thermal Conductivity, W/m-K 9.8
130
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 70
11
Density, g/cm3 8.8
3.1
Embodied Carbon, kg CO2/kg material 13
8.0
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 310
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 370
390 to 530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
44
Strength to Weight: Axial, points 27
33 to 38
Strength to Weight: Bending, points 23
37 to 40
Thermal Diffusivity, mm2/s 2.6
48
Thermal Shock Resistance, points 23
16 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.4
87.5 to 95
Bismuth (Bi), % 0
0 to 0.2
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 20 to 23
0 to 0.1
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 0 to 0.5
3.3 to 4.6
Iron (Fe), % 0 to 1.5
0 to 0.8
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0
0.4 to 1.8
Manganese (Mn), % 0 to 0.5
0.5 to 1.0
Molybdenum (Mo), % 19 to 21
0
Nickel (Ni), % 52.2 to 61
0 to 0.2
Nitrogen (N), % 0.020 to 0.15
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
0 to 0.8
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 0.3
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.3