MakeItFrom.com
Menu (ESC)

N06058 Nickel vs. 356.0 Aluminum

N06058 nickel belongs to the nickel alloys classification, while 356.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06058 nickel and the bottom bar is 356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
70
Elongation at Break, % 45
2.0 to 3.8
Fatigue Strength, MPa 350
55 to 75
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 86
27
Shear Strength, MPa 600
140 to 190
Tensile Strength: Ultimate (UTS), MPa 860
160 to 240
Tensile Strength: Yield (Proof), MPa 410
100 to 190

Thermal Properties

Latent Heat of Fusion, J/g 330
500
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1540
620
Melting Onset (Solidus), °C 1490
570
Specific Heat Capacity, J/kg-K 420
900
Thermal Conductivity, W/m-K 9.8
150 to 170
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.8
2.6
Embodied Carbon, kg CO2/kg material 13
8.0
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 310
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
3.2 to 8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 370
70 to 250
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 27
17 to 26
Strength to Weight: Bending, points 23
25 to 33
Thermal Diffusivity, mm2/s 2.6
64 to 71
Thermal Shock Resistance, points 23
7.6 to 11

Alloy Composition

Aluminum (Al), % 0 to 0.4
90.1 to 93.3
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 0 to 0.5
0 to 0.25
Iron (Fe), % 0 to 1.5
0 to 0.6
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 0 to 0.5
0 to 0.35
Molybdenum (Mo), % 19 to 21
0
Nickel (Ni), % 52.2 to 61
0
Nitrogen (N), % 0.020 to 0.15
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
6.5 to 7.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0 to 0.3
0
Zinc (Zn), % 0
0 to 0.35
Residuals, % 0
0 to 0.15