MakeItFrom.com
Menu (ESC)

N06058 Nickel vs. A390.0 Aluminum

N06058 nickel belongs to the nickel alloys classification, while A390.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06058 nickel and the bottom bar is A390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
75
Elongation at Break, % 45
0.87 to 0.91
Fatigue Strength, MPa 350
70 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 86
28
Tensile Strength: Ultimate (UTS), MPa 860
190 to 290
Tensile Strength: Yield (Proof), MPa 410
190 to 290

Thermal Properties

Latent Heat of Fusion, J/g 330
640
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1540
580
Melting Onset (Solidus), °C 1490
480
Specific Heat Capacity, J/kg-K 420
880
Thermal Conductivity, W/m-K 9.8
130
Thermal Expansion, µm/m-K 12
20

Otherwise Unclassified Properties

Base Metal Price, % relative 70
11
Density, g/cm3 8.8
2.7
Embodied Carbon, kg CO2/kg material 13
7.3
Embodied Energy, MJ/kg 170
140
Embodied Water, L/kg 310
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
1.6 to 2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 370
240 to 580
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
52
Strength to Weight: Axial, points 27
19 to 30
Strength to Weight: Bending, points 23
27 to 36
Thermal Diffusivity, mm2/s 2.6
56
Thermal Shock Resistance, points 23
9.0 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.4
75.3 to 79.6
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 0 to 0.5
4.0 to 5.0
Iron (Fe), % 0 to 1.5
0 to 0.5
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 19 to 21
0
Nickel (Ni), % 52.2 to 61
0
Nitrogen (N), % 0.020 to 0.15
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
16 to 18
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 0.3
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.2