MakeItFrom.com
Menu (ESC)

N06058 Nickel vs. C19010 Copper

N06058 nickel belongs to the nickel alloys classification, while C19010 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N06058 nickel and the bottom bar is C19010 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 45
2.4 to 22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 86
43
Shear Strength, MPa 600
210 to 360
Tensile Strength: Ultimate (UTS), MPa 860
330 to 640
Tensile Strength: Yield (Proof), MPa 410
260 to 620

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1540
1060
Melting Onset (Solidus), °C 1490
1010
Specific Heat Capacity, J/kg-K 420
390
Thermal Conductivity, W/m-K 9.8
260
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Base Metal Price, % relative 70
31
Density, g/cm3 8.8
8.9
Embodied Carbon, kg CO2/kg material 13
2.7
Embodied Energy, MJ/kg 170
42
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
7.3 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 370
290 to 1680
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 27
10 to 20
Strength to Weight: Bending, points 23
12 to 18
Thermal Diffusivity, mm2/s 2.6
75
Thermal Shock Resistance, points 23
12 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 0 to 0.3
0
Copper (Cu), % 0 to 0.5
97.3 to 99.04
Iron (Fe), % 0 to 1.5
0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 19 to 21
0
Nickel (Ni), % 52.2 to 61
0.8 to 1.8
Nitrogen (N), % 0.020 to 0.15
0
Phosphorus (P), % 0 to 0.015
0.010 to 0.050
Silicon (Si), % 0 to 0.1
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0
Tungsten (W), % 0 to 0.3
0
Residuals, % 0
0 to 0.5