MakeItFrom.com
Menu (ESC)

N06060 Nickel vs. 2017 Aluminum

N06060 nickel belongs to the nickel alloys classification, while 2017 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06060 nickel and the bottom bar is 2017 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 45
12 to 18
Fatigue Strength, MPa 230
90 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
27
Shear Strength, MPa 490
130 to 260
Tensile Strength: Ultimate (UTS), MPa 700
190 to 430
Tensile Strength: Yield (Proof), MPa 270
76 to 260

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 980
190
Melting Completion (Liquidus), °C 1510
640
Melting Onset (Solidus), °C 1450
510
Specific Heat Capacity, J/kg-K 430
880
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 65
10
Density, g/cm3 8.7
3.0
Embodied Carbon, kg CO2/kg material 12
8.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 280
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
24 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 180
41 to 470
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 22
17 to 40
Strength to Weight: Bending, points 20
24 to 42
Thermal Shock Resistance, points 19
7.9 to 18

Alloy Composition

Aluminum (Al), % 0
91.6 to 95.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0 to 0.1
Copper (Cu), % 0.25 to 1.3
3.5 to 4.5
Iron (Fe), % 0 to 14
0 to 0.7
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 1.5
0.4 to 1.0
Molybdenum (Mo), % 12 to 14
0
Nickel (Ni), % 54 to 60
0
Niobium (Nb), % 0.5 to 1.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.2 to 0.8
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15