MakeItFrom.com
Menu (ESC)

N06060 Nickel vs. 5010 Aluminum

N06060 nickel belongs to the nickel alloys classification, while 5010 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06060 nickel and the bottom bar is 5010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 45
1.1 to 23
Fatigue Strength, MPa 230
35 to 83
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 490
64 to 120
Tensile Strength: Ultimate (UTS), MPa 700
100 to 210
Tensile Strength: Yield (Proof), MPa 270
38 to 190

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1510
650
Melting Onset (Solidus), °C 1450
630
Specific Heat Capacity, J/kg-K 430
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 12
8.2
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 280
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
2.3 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 180
10 to 270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
10 to 22
Strength to Weight: Bending, points 20
18 to 29
Thermal Shock Resistance, points 19
4.5 to 9.4

Alloy Composition

Aluminum (Al), % 0
97.1 to 99.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0 to 0.15
Copper (Cu), % 0.25 to 1.3
0 to 0.25
Iron (Fe), % 0 to 14
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 1.5
0.1 to 0.3
Molybdenum (Mo), % 12 to 14
0
Nickel (Ni), % 54 to 60
0
Niobium (Nb), % 0.5 to 1.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15