MakeItFrom.com
Menu (ESC)

N06060 Nickel vs. 6060 Aluminum

N06060 nickel belongs to the nickel alloys classification, while 6060 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06060 nickel and the bottom bar is 6060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 45
9.0 to 16
Fatigue Strength, MPa 230
37 to 70
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 490
86 to 130
Tensile Strength: Ultimate (UTS), MPa 700
140 to 220
Tensile Strength: Yield (Proof), MPa 270
71 to 170

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1510
660
Melting Onset (Solidus), °C 1450
610
Specific Heat Capacity, J/kg-K 430
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 12
8.3
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 280
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
13 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 180
37 to 210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
14 to 23
Strength to Weight: Bending, points 20
22 to 30
Thermal Shock Resistance, points 19
6.3 to 9.9

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0 to 0.050
Copper (Cu), % 0.25 to 1.3
0 to 0.1
Iron (Fe), % 0 to 14
0.1 to 0.3
Magnesium (Mg), % 0
0.35 to 0.6
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 12 to 14
0
Nickel (Ni), % 54 to 60
0
Niobium (Nb), % 0.5 to 1.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.3 to 0.6
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15