MakeItFrom.com
Menu (ESC)

N06060 Nickel vs. 6162 Aluminum

N06060 nickel belongs to the nickel alloys classification, while 6162 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06060 nickel and the bottom bar is 6162 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 45
6.7 to 9.1
Fatigue Strength, MPa 230
100 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
26
Shear Strength, MPa 490
170 to 180
Tensile Strength: Ultimate (UTS), MPa 700
290 to 300
Tensile Strength: Yield (Proof), MPa 270
260 to 270

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1510
640
Melting Onset (Solidus), °C 1450
620
Specific Heat Capacity, J/kg-K 430
900
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 12
8.3
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 280
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
19 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 180
510 to 550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
29 to 30
Strength to Weight: Bending, points 20
36
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0
96.7 to 98.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0 to 0.1
Copper (Cu), % 0.25 to 1.3
0 to 0.2
Iron (Fe), % 0 to 14
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 12 to 14
0
Nickel (Ni), % 54 to 60
0
Niobium (Nb), % 0.5 to 1.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.4 to 0.8
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15