MakeItFrom.com
Menu (ESC)

N06060 Nickel vs. A384.0 Aluminum

N06060 nickel belongs to the nickel alloys classification, while A384.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06060 nickel and the bottom bar is A384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
74
Elongation at Break, % 45
2.5
Fatigue Strength, MPa 230
140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
28
Shear Strength, MPa 490
200
Tensile Strength: Ultimate (UTS), MPa 700
330
Tensile Strength: Yield (Proof), MPa 270
170

Thermal Properties

Latent Heat of Fusion, J/g 320
550
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1510
610
Melting Onset (Solidus), °C 1450
510
Specific Heat Capacity, J/kg-K 430
880
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 65
11
Density, g/cm3 8.7
2.8
Embodied Carbon, kg CO2/kg material 12
7.5
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 280
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 180
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 22
32
Strength to Weight: Bending, points 20
38
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0
79.3 to 86.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0.25 to 1.3
3.0 to 4.5
Iron (Fe), % 0 to 14
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 12 to 14
0
Nickel (Ni), % 54 to 60
0 to 0.5
Niobium (Nb), % 0.5 to 1.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
10.5 to 12
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.35
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5