MakeItFrom.com
Menu (ESC)

N06060 Nickel vs. C443.0 Aluminum

N06060 nickel belongs to the nickel alloys classification, while C443.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06060 nickel and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 45
9.0
Fatigue Strength, MPa 230
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
27
Shear Strength, MPa 490
130
Tensile Strength: Ultimate (UTS), MPa 700
230
Tensile Strength: Yield (Proof), MPa 270
100

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1510
630
Melting Onset (Solidus), °C 1450
600
Specific Heat Capacity, J/kg-K 430
900
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 12
7.9
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 280
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
17
Resilience: Unit (Modulus of Resilience), kJ/m3 180
70
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 20
31
Thermal Shock Resistance, points 19
10

Alloy Composition

Aluminum (Al), % 0
89.6 to 95.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0.25 to 1.3
0 to 0.6
Iron (Fe), % 0 to 14
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0 to 0.35
Molybdenum (Mo), % 12 to 14
0
Nickel (Ni), % 54 to 60
0 to 0.5
Niobium (Nb), % 0.5 to 1.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
4.5 to 6.0
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.15
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25