MakeItFrom.com
Menu (ESC)

N06060 Nickel vs. C17510 Copper

N06060 nickel belongs to the nickel alloys classification, while C17510 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N06060 nickel and the bottom bar is C17510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 45
5.4 to 37
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 82
44
Shear Strength, MPa 490
210 to 500
Tensile Strength: Ultimate (UTS), MPa 700
310 to 860
Tensile Strength: Yield (Proof), MPa 270
120 to 750

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Maximum Temperature: Mechanical, °C 980
220
Melting Completion (Liquidus), °C 1510
1070
Melting Onset (Solidus), °C 1450
1030
Specific Heat Capacity, J/kg-K 430
390
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Base Metal Price, % relative 65
49
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 12
4.2
Embodied Energy, MJ/kg 160
65
Embodied Water, L/kg 280
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
39 to 92
Resilience: Unit (Modulus of Resilience), kJ/m3 180
64 to 2410
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 22
9.7 to 27
Strength to Weight: Bending, points 20
11 to 23
Thermal Shock Resistance, points 19
11 to 30

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.2 to 0.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0.25 to 1.3
95.9 to 98.4
Iron (Fe), % 0 to 14
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 12 to 14
0
Nickel (Ni), % 54 to 60
1.4 to 2.2
Niobium (Nb), % 0.5 to 1.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.0050
0
Tungsten (W), % 0.25 to 1.3
0
Residuals, % 0
0 to 0.5