MakeItFrom.com
Menu (ESC)

N06060 Nickel vs. C66300 Brass

N06060 nickel belongs to the nickel alloys classification, while C66300 brass belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N06060 nickel and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 45
2.3 to 22
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82
42
Shear Strength, MPa 490
290 to 470
Tensile Strength: Ultimate (UTS), MPa 700
460 to 810
Tensile Strength: Yield (Proof), MPa 270
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1510
1050
Melting Onset (Solidus), °C 1450
1000
Specific Heat Capacity, J/kg-K 430
380
Thermal Expansion, µm/m-K 12
18

Otherwise Unclassified Properties

Base Metal Price, % relative 65
29
Density, g/cm3 8.7
8.6
Embodied Carbon, kg CO2/kg material 12
2.8
Embodied Energy, MJ/kg 160
46
Embodied Water, L/kg 280
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 180
710 to 2850
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 22
15 to 26
Strength to Weight: Bending, points 20
15 to 22
Thermal Shock Resistance, points 19
16 to 28

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0.25 to 1.3
84.5 to 87.5
Iron (Fe), % 0 to 14
1.4 to 2.4
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 12 to 14
0
Nickel (Ni), % 54 to 60
0
Niobium (Nb), % 0.5 to 1.3
0
Phosphorus (P), % 0 to 0.030
0 to 0.35
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
1.5 to 3.0
Tungsten (W), % 0.25 to 1.3
0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5