MakeItFrom.com
Menu (ESC)

N06110 Nickel vs. 413.0 Aluminum

N06110 nickel belongs to the nickel alloys classification, while 413.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N06110 nickel and the bottom bar is 413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 53
2.5
Fatigue Strength, MPa 320
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 84
28
Shear Strength, MPa 530
170
Tensile Strength: Ultimate (UTS), MPa 730
270
Tensile Strength: Yield (Proof), MPa 330
140

Thermal Properties

Latent Heat of Fusion, J/g 340
570
Maximum Temperature: Mechanical, °C 1020
170
Melting Completion (Liquidus), °C 1490
590
Melting Onset (Solidus), °C 1440
580
Specific Heat Capacity, J/kg-K 440
900
Thermal Expansion, µm/m-K 12
20

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.6
2.6
Embodied Carbon, kg CO2/kg material 11
7.6
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 320
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 260
130
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 23
29
Strength to Weight: Bending, points 21
36
Thermal Shock Resistance, points 20
13

Alloy Composition

Aluminum (Al), % 0 to 1.0
82.2 to 89
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 28 to 33
0
Copper (Cu), % 0 to 0.5
0 to 1.0
Iron (Fe), % 0 to 1.0
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 9.0 to 12
0
Nickel (Ni), % 51 to 62
0 to 0.5
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.5
0
Silicon (Si), % 0 to 1.0
11 to 13
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 1.0
0
Tungsten (W), % 1.0 to 4.0
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25